Many Utilities Ban The Use of Automatic Splices

There are estimated to be 250 million automatic splices installed on overhead power lines in North America. The majority of which were installed over 30 years ago.

A variety of reports in the field indicate the service life of automatics is as short as five years up to, and perhaps surpassing 30 years.

A recent event, where an automatic splice, installed for only 5 years, let go and dropped a line on a woman, ultimately resulting in her tragic death. The lawsuit resulted in an award of $105 Million!

Unfortunately, due to the advanced age of the power grid, overhead splice failures are increasing at a rapid rate putting the safety of the unsuspecting public at risk.

Google “Swingset Electrocution” to see a video of an overhead power line that came down on top of a metal swing set. Luckily, no children were in the area when this potential catastrophe took place.

As a result of this steadily increasing problem, many utilities have completely banned the use of automatic splices or are limiting their use only for the purpose of emergency restoration.

Many utilities are also correcting and protecting existing splices and overhead connectors by installing permanent ClampStar® shunts on them. ClampStar installs in a few minutes, is relatively inexpensive, and results in a connection of significantly higher integrity than even that of an original, properly installed connector!

CSR-0325-015 Protect with CS

ClampStar® is intended to correct and reinforce the deteriorated electrical and mechanical performance of hot-running, aged or degraded splices and other connectors.

ClampStar, along with proactive maintenance practices improves safety and prevents unplanned outages. ClampStar is the industry’s only PERMANENT solution for protecting overhead splices and connectors.

ClampStar is the least expensive insurance you can buy!

Classic Connectors USA Introduces Overhead Shield Wire (OHSW) Protection And Correction

When attending the upcoming IEEE show in Dallas, please visit the Classic Connectors booth #4736 to see the new ClampStar® for Overhead Shield Wire. This new ClampStar is designed for both tangent and deadend applications as well as splices.  Full tension on galvanized and HSS, as well as Alumoweld and OPGW!  Both insulated and non-insulated versions are available.  An option for copper is also offered. All the features you’d expect from ClampStar: prefilled with a proprietary inhibitor, torque-shear fasteners, First Class, High Integrity Solutions!

  • Lightweight design installs in less than 10 minutes!
  • Easily installs over existing connectors
  • No mechanical grips, Come-Alongs, jumper cables or cutters needed
  • Installs with a hot stick or barehand

ClampStar OHSW units are a permanent repair fitting composed of an attachment head, which connects to the OHSW and a connecting link that attaches to the tower bracket. This connecting link is available in either an insulated or non-insulated design based on the application. A custom bracket is included to anchor the assembly to the tower. This unit serves as an OSHW safety catch to prevent the shield wire from falling into the energized conductors or substation bus below.

ClampStar units are readily and quickly installed from any aerial platform (including helicopters). ClampStar units may be used for a variety of repair situations, at splices, dead-ends, suspension systems, or wherever conductor or attachment hardware damage has occurred, or may occur.

ClampStar shunts provide an excellent solution for PERMANENT mechanical and electrical upgrade to existing OSHW connections.  ClampStar will meet NERC's requirements for OHSW safety anchors without costly replacement, repair or expensive downtime.

Each unit is prefilled with proprietary CC3 inhibitor to prevent galvanic corrosion and is designed with an integral fastening assembly that provides a high conductivity path and incorporates flat and Belleville washers to maintain compressive force regardless of thermal contraction and expansion.

As the grid ages, many electric utilities are experiencing a large increase in downed lines due to overhead connectors reaching the end of their service life. Installing ClampStars on them before they fail is the best way to prevent outages and protect the public.

The smartest grid in the world looks pretty stupid when it is lying on the ground!

Other ClampStar distribution and transmission products will be on display. There will also be a hands-on demonstration. Come on by and discuss your specific application with our engineers.

We look forward to seeing you in Dallas!

Classic Connectors USA Introduces a New Transmission Class ClampStar® That Substantially Decreases Total Installation Time

This new ClampStar model CSR-1631-048 is designed to protect and thermally uprate connectors to meet n-1 contingency conditions as well as continuous service on overhead transmission lines with Aluminum and ACSR type conductors sized from 1272 Bittern to 1780 Chukar and up through 2000 kcmil Cowslip AAC

Each unit is prefilled with proprietary CC2 inhibitor to prevent galvanic corrosion and is designed with an integral fastening assembly that provides a high conductivity path and incorporates flat and Belleville washers to maintain compressive force regardless of temperature induced contraction and expansion.

ClampStar shunts provide an excellent solution for PERMANENT mechanical and electrical upgrade to existing conductor connections. And ClampStar helps meet NERC's maximum conductor operating temperature requirements without costly replacement, repair or expensive downtime. Additional sizes are available for splices, suspension clamps, deadends, and damaged conductor repair. ClampStar units are designed for use on ACSR, AAC, AAAC, ACAR, ACSS & Fiber composite core. ClampStar units are also available for use on copper conductors.

·       New lighter weight design installs in less than 10 minutes!

·       Decreases total installation time by 70 - 80%

·       Easily installs over existing connectors

·       No mechanical grips, Come-Alongs, jumper cables or cutters needed

·       Installs with a hot stick or barehand

The most cost-effective, technically superior, uprate technology alternative

In 2000, NERC began advising utilities to consider actual field conditions to confirm transmission line thermal ratings. In turn, many utilities have surveyed transmission lines to identify critical issues and determine whether their lines are capable of meeting required contingencies.

Depending on line length, utilities may have to replace dozens or even hundreds of compression dead-ends and mid-span splices. Field crews not only have to work on tight schedules, but obtaining clearances to de-energize lines may not be an option. If outages can be obtained, circumstances may require a utility to fund spinning reserve from another source to accommodate the outage if the duration of the transferred load exceeds the capacity of the alternate source. To circumvent these challenges and save a substantial amount of money and time in the field, proven technology that first became available in 2008 provides airborne power line contractors the ability to assist utilities by installing shunt technology via helicopter.

Click here to read the latest T&D World Magazine article about the most cost effective, technically superior alternative for uprating and repairing overhead transmission lines. You'll learn how to quickly restore both mechanical and electrical integrity to connectors with a single device, designed to be installed on energized lines without the need for power interruptions.

Click here to watch the Air2 aerial lineman install ClampStars.

Classic Connectors USA Introduces the Newest ClampStar®, The Latest in Connector Corrector Technology, for Use on Copper Conductor

January 15, 2015 -- Classic Connectors USA, CSR-0325L-007-P is designed to protect automatic splices on overhead, copper conductor sized from #6 - #2 AWG. In addition to torque limiting nuts, each unit is supplied with nickel-plated keepers, and is prefilled with proprietary CC² inhibitor to prevent galvanic corrosion. The unit weighs 1.75 lbs. and can be easily installed on an energized line with a hot-stick or gloves. ClampStar® helps avoid potential catastrophes and expensive lawsuits resulting from failing overhead splices. In just minutes, this eliminates risk and prevents connector failures before they occur, without costly replacement, repair, or expensive downtime. Additional sizes for use with copper are available for splices, suspension clamps, dead-ends, and damaged conductor repair. ClampStar units are also available for use on all aluminum stranded conductors, e.g., ACSR, AAC, AAAC, ACAR, ACSS & fiber composite core.

International Lineman's Rodeo Video Montage

This video pays tribute to the those highly trained and dedicated individuals that keep the lights on. They're out there in extreme conditions doing what they do best and we appreciate it!

Choosing the Right Fastener - Part ll

By Carl Tamm

In the first part of this article, a brief mention was made regarding “conductivity” of fasteners.  This second section will address that issue.

Peculiarities of electrical connectors give rise to further thought of fasteners.  It is not exceptionally difficult, using reasonable workmanship and materials, to make an electrical connection of reasonable conductivity initially – however, to make one which will provide exceptional duration for many decades is another story.

While there are many types of “bolted connectors” used in the utility industry, for simplicity references this article will relate to flat “pad-to-pad” type connections.  The physics involved in the atomic structure of the electrical interface are too involved to address in this article, however sufficient evidence is readily available to show that a typical 4-bolt pad-to-pad connection will achieve less than 2% of the “available” surface area that will actually make an electrical connection.  Some of the earlier references to this phenomenon of area immediately surrounding the bolt holes being the only actual contact area date back over 55 years.

Kaiser Aluminum – Electrical Bus Conductors, 1957

Accepting this long stated peculiarity to be true, one might ask, “What could be done to improve that value?”  The industry has been striving to improve the area of contact “between” the pads – but the obvious option of allowing the bolts to serve as conductive paths is often overlooked.

Use of conductive washers and fasteners can provide additional current paths from the backside of the respective pads, through the fasteners!  How obvious is that?  Why do so many disregard this simplistic improvement?  Some other misunderstandings, such as reusing fasteners, will be addressed in a future part of this article.

Perhaps a simplistic understanding of fastener conductivity will help.  One may look at either conductivity or resistivity.  I prefer the former, as the numbers are more simplistic and easy to understand.  The common basis used for conductivity values is the International Annealed Copper Standard, abbreviated IACS.  The following chart indicates values for a number of materials commonly used in our industry, and a few more for reference.

Most are surprised to learn that Gold is not the most conductive material, but is significantly superseded by Silver! The attributes of gold, and its place in Contact Physics is not the subject of this article. Of equal surprise to most, is that while we all recognize iron and steel are conductive, its value of conductivity is only 2.5% IACS. This value is close enough for argument, not to get into the specific values of different alloys, and represents all common ferrous alloys, and includes “stainless” alloys.

Alloys used for connectors commonly range from 16% to about 44%. While Silicon Bronze bolts, or the common aluminum alloys used for bolts are not nearly as conductive as the materials used for conductors, they commonly do approach the conductivity of many connectors, of approximately 16% to 24%. The lesser degree of conductivity of these fasteners is due to the alloying elements used to provide the strength needed for fasteners. Still, these conductive fasteners provide 8 to 12 times the conductivity of steel.

What is the result of using steel or stainless steel bolts in connectors? While very low in conductivity, they are yet conductive, and the low value of conductivity is the reason for the “high resistance” associated with steel. The very definition of resistance is associated with the thermal rise of the material as the result of passing electrical energy through it. The physical effect is the expansion of the material due to the thermal rise. With bolts, the higher the temperature, the less clamping force provided!

To counteract this, properly designed and applied Belleville washers are used to maintain the clamping force, as Mr. Goch covered in Part 1 of this series. As Part 2 began, our purpose is to provide a bolted joint that will maintain the electrical integrity of the connection over many decades. Maintaining the clamping force is paramount to achieving this goal. The following illustration depicts the effects of the difference in the coefficient of thermal expansion between differing materials used in electrical connections.

As the illustration depicts, differing materials expand at differing rates over a given temperature rise.  This property is given stated values for different materials, known as the coefficient of thermal expansion related to the respective materials.  Both aluminum and copper alloys expand at a greater rate than steel.  The use of steel bolts, without the benefit of properly sized and applied Belleville washers will result in rapid creep of softer material of the connectors, and the joint will loosen over time.  Of course, as it loosens, the resistance will rise, and with that given rise in resistance, the thermal rise for a given current will increase.

There exist several design features incorporated in ClampStar, the result of which provide a superior connection to other types of connections, including compression connectors.  Thus another reason ClampStar provides the properly engineered Belleville washers in its fastening system!  As Mr. Goch stated in the previous part 1, the torque nuts, designed by Classic Connectors, Inc., prevent over-tightening of the fasteners, and thereby prevent over compression of the Belleville washers.

Additional information on Belleville washers will be incorporated in another series!

Click here to view and download this article in a print friendly, PDF format

Choosing the Right Fastener

By Waymon P. Goch

With proper attention to the fastener assembly, the best choice is almost always fasteners of the same material as the components being joined. The primary reason is it eliminates differential thermal expansion and contraction, and just as important, since we are talking about electrical connectors, is that it will be conductive, at least more conductive than steel fasteners.  More discussion on this subject in a following article.

A common misconception is that stainless steel fasteners do not rust, but they do rust under certain conditions. Stainless steel remains stainless in unpolluted atmospheres and when immersed in moving or flowing fresh and seawater. In humid marine environments or stagnant moisture conditions, type 304 stainless, for example, may rust locally in pitting, crevice, stress, concentration cell, knife edge, and galvanic corrosion. The exposure environment and chemical composition of the stainless steel will dictate whether or not rusting will occur.

Stainless steel owes its corrosion resistance to a very thin, compact passive surface layer that forms upon exposure to oxygen. If the surface is scratched and exposed to oxygen, the scratches will again become passive. It is primarily this passive layer that is also responsible for galling and seizure of stainless threaded fasteners. The layer may flake with small particles becoming trapped in the thread bearing surfaces where the pressure is sufficient to cold weld the internal and external threads together. The use of anti-seize compounds and different grades of stainless are often recommended to prevent or minimize galling and seizure but these options may only be partly successful. By far, the best solution I have found over the years is to mechanically zinc plate either the stainless bolt or nut (normally the nut).

Particular attention should be given to this “galling” or seizing tendency.  The purpose of the bolt is to provide a clamping force between two or more components.  During assembly, the tensile stress which provides this clamping force is obtained by torque applied, less the friction between the threads of the bolt and nut, and the friction of the face of the bolt against the mating surface.  The most common means of determining that the appropriate tensile stress and elongation of the bolt is achieved during assembly is calculated against torque.  “Galling” or seizing of these threads consumes the force provided by the torque applied, giving a false indication of clamping force achieved.

There are many applications in which stainless steel fasteners are appropriate but they should not be considered universal.

How does a bolted joint work?

A properly tightened bolt is essentially a spring; achieved through elastic elongation of the bolt. Under constant static loading at a constant temperature, that alone would be entirely satisfactory without the need for lock washers, Belleville spring washers, or other devices to maintain clamping force. However, most applications are dynamic and require additional consideration.

The well-accepted equation for computing torque-tension relationships in bolted joints is:

T = kDW/12

Where T = torque in lb-ft, k = friction factor or torque coefficient, D = bolt diameter in inches, and W = bolt tension in lbf.

The static friction constant k varies with the fastener material and material condition (lubricated or dry) and ranges from 0.11 for lubricated steel to around 0.30 for lubricated aluminum and stainless steel. The overall torque coefficient depends upon the materials being joined, thread clearance, and the torque coefficient of the bearing surface against which the bolt head or nut is being turned. Friction is an important consideration because it represents torque that is lost in overcoming friction and not applied to create bolt tension.

Recommended fastener torques for common sizes, grades, and materials are provided by manufacturers as well as industry standards such as the Industrial Fasteners Institute, ANSI C119.4, and others. Recommended torque is usually based on final fastener tension within the elastic limit and is typically 60 – 70% of the proportional limit, yield point, or proof load. The bolt will continue to stretch if loaded beyond yield but will be unable to return to its original length, thereby reducing the clamping force.

The absence of torque wrenches in tool belts and bags of line personnel and installers frequently results in a policy of tightening “until tight” then applying another half or full turn.

ClampStar® avoids this potential problem, assures proper installation torque, and eases installation by providing torque-limiting nuts with an outer section that shears off at the proper torque, leaving a permanent hex nut in place, regardless of the type of wrench employed. This facilitates the use of pneumatic, electric, hydraulic, or battery operated nut runners, wrenches, and rattle guns.

Conventional spring or split lock washers are frequently recommended for maintaining fastener tension under dynamic loading. However, a good definition of a spring lock washer is a flat washer with a split. They are ineffective in maintaining live spring follow up because they completely flatten under relatively low compressive loading; typically around 350 lbf for ½” lock washers.

The most effective means of assuring live spring follow up is the use of Belleville type spring washers, properly sized, that will remain within its working range and not flatten or reverse, under any anticipated thermal or mechanical load excursions.

So, how do we choose the right fasteners?

The majority of electrical connectors are aluminum-to-aluminum, copper-to-copper, aluminum-to-copper, galvanized steel-to-galvanized steel and galvanized steel-to-copper or aluminum.

Proper surface preparation and the use of the correct inhibitors and joint compounds are critical steps in the creation of a low resistance electrical connection to assure long service life, but those are subjects for another time.

The preferred and recommended fastener materials for joining like and unlike metals are shown in the following chart. Although the chart references flat bar connections, the same applies to pad-to-pad as well as connections of other shapes.

Aluminum bolts are typically 2024-T4 with a #205 Alumilite finish, washers are 7075-T6 and nuts are 6061-T6 with a wax finish.

Silicon Bronze alloy bolts, washers and nuts are preferred for copper to copper connections.

Stainless steel bolts, washers and nuts are primarily type 304, 304L or 316 austenitic stainless. Type 316 has better corrosion resistance and greater creep strength than 304 or 304L due to its slightly higher nickel content.

Hot dip galvanized steel bolts are normally ASTM A307 grade 2 low carbon steel or ASTM A325 grade 5 medium carbon or low alloy steel. Grade 2 bolts do not have a grade marking on the head whereas grade 5 is marked with 3 radial lines. Both may contain the bolt manufacturer’s identification and both are galvanized according to ASTM A153. Galvanized or stainless steel flat and Belleville spring washers may be supplied and used with galvanized steel bolts. Galvanized steel nuts are tapped oversize for a class 2 fit on galvanized bolts.

We’re sure that readers will find this brief discussion worthwhile.

Click here to view and download this article in a print friendly, PDF format

Fault Current and the Effects on ClampStar®

By Waymon Goch

The terms fault and short circuit in electric power systems are frequently used interchangeably but there are slight differences. A fault can be defined as any abnormal flow of current whereas a short circuit is a current that completely bypasses the load by flowing directly to ground (earth) or by returning to the source. Thus, a very low or zero impedance short circuit is a fault but a high impedance fault may not be a short circuit since current may continue to be supplied to the load.

Single phase faults can be line to ground, line to neutral, arcing, or open and can be momentary (transient) or persistent. A transient fault is cleared after power is disconnected for a short time whereas a persistent fault must be corrected. The effect on insulation depends upon whether the insulation is self-restoring or not.

In polyphase systems a fault that effects all phases equally is a symmetrical fault. If only some phases are involved, an asymmetrical fault occurs. Asymmetrical faults are more difficult to analyze because equal current magnitudes in all phases no longer applies and methods such as symmetrical components are normally used for analysis.

The suggestion for this particular article came from recent laboratory fault current tests during which the participants were surprised by melting (fusing) of the test conductors while the ClampStar® units remained near room ambient temperature. From our viewpoint, those results were as expected. (See Video Gallery, High Current Test at

Conductor fault current ratings are used to determine the suitability of a given conductor material and construction to withstand the anticipated fault current magnitude and duration without jeopardizing the mechanical integrity of the conductor.

Fault currents can result in very high currents in conductors from initiation until the fault is cleared by protective devices such as circuit breakers, fuses, reclosers, etc. Modern relaying typically limits the fault duration to fewer than 20 cycles on transmission circuits but may be longer for distribution. When multiple attempts at reclose occur, the total fault current exposure time is the sum of the interruption times.

Figures 1 and 2 are fault current versus time curves for a range of AAC and ACSR conductors. These particular curves are taken from the Southwire Overhead Conductor Manual. They are also available in the Aluminum Association, Aluminum Electrical Conductor Handbook as well as other handbooks and publications (and if such tables are not available, they can be generated by the following equations).

ACSR:     I = 0.0862 A / √ t

AAC:       I = 0.0671 A / √ t

Where: I = Current in Amperes, A = Cross-sectional area, cmil, and t = Time, seconds

The following metal characteristics are needed to calculate fusing (melting) time;

  • melting point, ⁰C
  • density, grams/cm3
  • specific heat, calories/gram/⁰C
  • resistivity (ρ), ohm-cm
  • sp ht x melting point x density = cal/cm3 to melt wire or section
  • multiply cal/cm3 x volume (cm3 ) = calories to melt
  • multiply by 4.61 joules/cal = joules required to melt
  • resistance (R) = ρl/A (resistivity x length / area = ohm-cm x cm/cm2 = ohms
  • time to melt = I2 Rt = joules or watt-seconds to melt
  • t = joules / I2 R (time to melt is inversely proportional to I2 )

The difference in acceptable fault current limits for ACSR and AAC results primarily from the difference in established allowable temperature. For AAC and other all aluminum construction a limit of 340⁰C has been established since momentary exposure to this temperature does not result in significant loss of strength.

For ACSR, and other conductors with high steel core content, an upper limit of 645⁰C represents the threshold of melting of the aluminum and the unaffected steel core is expected to maintain sufficient mechanical strength, although the contribution to overall conductor strength (RBS) of the aluminum strands may be substantially reduced.

Of significant interest to most people, and the reason the referenced fault current tests were conducted, is that the electrical interface of a connection is commonly known to be significantly degraded by severe fault currents.  This is particularly true of aged connectors where some portion of the interface has already been degraded due to natural aging, and while the remaining available interface may be sufficient to carry the normal current load of the system, the mechanical and electrical stress induced in a connector during a fault event will often destroy the remaining interface resulting in a catastrophic failure, or degrade it such that a mechanical failure is imminent in the near future under moderate to heavy loads. It is also important to note that a partially degraded interface resulting from natural aging is almost impossible to detect with either resistance readings or infrared under normal loading conditions.

Heating of the conductor occurs more rapidly than cooling and although fault currents can also result in mechanical forces (which can be calculated from readily available information in handbooks and other sources) the primary consideration for conductors is thermal.

Fault current limits for copper conductors and accessories can be calculated in the same manner and three common formulae have been developed over the years.

A formula developed by W.H. Preece (I = αd3/2) in which I = fusing current, d = wire diameter in inches, and α = a constant depending upon the material which, for copper is 10,244. Although this formula was widely used it proved to be inaccurate in many cases because it assumed that all heat loss was due to radiation. The formula, I = kdn can be used with accuracy if k and n are known for a particular case.

Figure 3 is a fusing current curve for copper conductors from 30 AWG to 500 kcmil prepared by E.R. Stauffacher that assumes no radiant heat loss due to the short times involved, a copper melting temperature of 1083⁰C and ambient temperature of 40⁰C.

I.M. Onderdonk also developed a simpler equation for calculating the fusing time for copper conductors and copper connectors:

33 (I/A)2 S = log [(Tm – Ta / 234 + Ta) + 1]


I = A √ log (Tm – Ta / 234 + Ta + 1) /33S

Where: I = current in amperes, A = conductor area, circular mils, T = time current applied, seconds, Tm = melting point of copper, ⁰C, and Ta = ambient temperature, ⁰C

Not surprising, this is called the Onderdonk equation which can also be used to estimate the performance of soldered, brazed, and bolted copper connections, using appropriate melting temperatures for the solder and brazing alloys of interest. For bolted connections, a generally accepted value of Tm is 250⁰C.

It is important to determine the available fault current at the location of interest. Such studies normally begin with a line diagram showing all loads and potential sources of fault current. (During a symmetrical fault, induction motors will contribute only during the asymmetric portion of fault current but synchronous motors may contribute 4 – 6 times their full load current to all fault locations). Capacitors may also be a factor under some conditions. Protective devices are not normally included in the line diagram.

Worst case short circuits are normally based on bolted 3 phase fault conditions in which all three phases are “bolted” together to obtain a zero impedance fault. This results in maximum thermal and mechanical stress in the system and typically assumes infinitely available fault current from the primary source.

Figure 3 Copper current - time

Recommended reading: “Hard to Find Information About Distribution Systems, Volume 1”, Jim Burke, September 18, 2006 (

References: “Standard Handbook for Electrical Engineers“, Fink and Beaty, McGraw-Hill

IEEE Std 738, “IEEE Standard for Calculating the Current-Temperature Relationship of Bare Overhead Conductors” may also be useful. It can be used to calculate both steady-state and transient thermal ratings and conductor temperatures.

Click here to view and download this article in a print friendly, PDF format

Corona, RIV/TVI Testing Complete

By Carl R. Tamm

If your concept of corona is that it is commonly consumed with a slice of lime, you might wish to read a bit more about issues in our industry that differ slightly from that concept!

Fair weather radio and television interference (RIV and TVI) generated by overhead lines are most frequently caused by corona. Corona results from voltage overstress on the surfaces of conductors and other energized components. On distribution lines, sparking at lightly loaded connections and associated non-conductive films may also generate RIV/TVI. Corona also results in resistive power loss on transmission and distribution lines. Under foul weather conditions virtually all energized conductors and components are in corona.

With all this concern about Corona and at the request of a few customers we recently conducted RIV and Corona tests on CSF-1108-024-COR345 and CSF-1302-024-COR500 standard production ClampStar® units.

The tests were conducted in the HPS (Ohio Brass Company) high voltage environmental test chamber in Wadsworth, OH on September 13, 2012. The RIV tests were conducted in accordance with NEMA 107, “methods of measurement of radio influence voltage (RIV) of high-voltage apparatus”. Corona observations in complete darkness were made with the aid of a Noctron V night vision system (night image intensifier) S/N 5046. Click here to get the full report.